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In Java’s first year it has become clear that many of the problems posed by executable 
content have not been solved. The almost exclusive focus of the Java community on 
executable content has left numerous avenues unexplored for threats. It has been 
observed that there is no one-to-one correspondence between Java source code 
(programs) and Java byte code (class files). While every program written in Java can be 
compiled to byte code by a Java compiler, it is possible to create classfiles which no Java 
compiler can produce, and yet, which pass the Java Verifier with flying colors. This fact 
has one very serious implication -No matter what claims are made, and even formally 
demonstrated, for the security of the Java language, all bets are off when it comes to byte 
code running in the Java Virtual Machine. This paper will explore some of the 
implications of this curious lack of coherence between Java source code and byte code. It 
will also illustrate how easy it is to alter Java class files for malicious purposes. 

1. THE STATE OF JAVA SECURITY 

The Java programming language has recently turned one year old. In its first year, Java 
has had a number of spectacular holes punched in its security model by Ed Felten and the 
Safe Internet Programming Team at Princeton University [McGF]. Since February of 
1996 the Hostile Applets Home Page at the Georgia Institute of Technology’s School of 
Mathematics has featured a collection of evil applets (with complete source code), and 
yet Sun Microsystems and its corporate partners have shown little progress in combatting 
hostile applets [LaD1, LaD2]. A year ago, when Java was first gaining notoriety, few 
people imagined that so many serious flaws would surface so quickly, and even fewer 
believed that threats from hostile applets would persist. In Java’s first year it has become 
clear that many of the problems posed by executable content have not been solved. The 
power and complexity of the language make it extremely likely that security holeswill 
continue to appear in years to come.  It has been observed that there is no one-to-one 
correspondence between Java source code (programs) and Java byte code (class files) 
[McGF, LaD4]. 

While every program written in Java can be compiled to byte code by a Java compiler, it 
is possible to create class files which no Java compiler can produce, and yet, which pass 
the Java Verifier with flying colors. Such class files are said to be deviant. Not only is it 
possible to create deviant class files, it is a simple matter to do so, and the number of 
these non-compiler class files greatly exceeds the number of those producible by Java 
compilers. This fact has one very serious implication - No matter what claims are made, 
and even formally demonstrated, for the security of the Java language, all bets are off 
when it comes to byte code running in the Java Virtual Machine. Deviant class files that 
pass the Verifier and exploit unenforced, or improperly implemented, Verifier rules have 
the potential toreduce Java Security to rubble. 

Note that this applies as well to the most untrusted of applets (which are Java programs 
downloaded and run automatically by most browsers) as it does to applications (which 



are programs set up and run in more traditional ways). While inadvertently trusting a 
hostile application can lead to ruin, so can accidentally downloading a hostile applet that 
exploits the increased power of Java byte code over Java source code. Thus the 
distinction be-tween applications and applets is unimportant in the present context. Until 
this new threat posed by Java applets is more fully understood and explored, it is wise to 
regard applets with more suspicion than ever before.   

This paper will explore some of the implications of this curious lack of coherence 
between Java source code and byte code. It will also illustrate how easy it is to alter Java 
class files for malicious purposes. Section 2 contains an overview of some salient facts 
about the Java class file for-mat.   

It highlights the ease with which class files can be altered to become deviant and do 
things beyond the power of Java source code. Section 3 describes the problem of 
incoherence between Java source code and byte code. It points out several surprising 
properties of byte code as well as several rules unenforced by the Java Verifier, all of 
which could lead to se-curity breaches. Section 4 then introduces a number of examples 
in order to illustrate the threats. One particularly interesting example that will be 
considered at length is the application HoseMocha.java, which can be ap-plied to 
applications and applets, making them impervious to the celebrated Mocha decompiler. 
Finally, Section 5 recounts recent experience with somerudimentary Java Platform 
viruses, and it assesses the possibility of more virulent threats from hostile  byte code. 

2. AN OVERVIEW OF THE JAVA CLASS FILE FORMAT 

When Java source code is compiled, the result is a class file , having a .class extension 
and containing platform-independent byte code in a very specific format. A class file 
should be regarded as a stream of 8-bit bytes, with 16-bit, 32-bit, and 64-bit quantities 
being constructed in big-endian order from two, four, and eight consecutive 8-bit bytes, 
respectively. The Java Virtual Machine (JVM) Specification represents a class file in a C-
like structure notation as follows [Lind]: 

ClassFile  

u4 magic; 

u2 minor version; 

u2 major version; 

u2 constant pool count; 

cp info constant pool[constant pool count - 1]; 

u2 access flags; 

u2 this class; 



u2 super class; 

u2 interfaces count; 

u2 interfaces[interfaces count]; 

u2 fields count; 

field info fields[fields count]; 

u2 methods count; 

method info methods[methods count]; 

u2 attributes count; 

attribute info attributes[attributes count]; 

Here the notation un refers to an unsigned n-byte quantity. While this structure gives 
some idea of the nature of Java class files, it will be helpful to take a closer look at a few 
of the details. 

The 4-byte quantity magic has the value 0xCAFEBABE and identifies the class file as 
such. The 2-byte quantities minor version and major version specify which version of the 
Java compiler produced the class file. The constant pool is a table of structures that repre-
sent an assortment of class, field, and method names as well as string and other constants 
used within the class file. The constant pool count specifies how many entries are present 
in the constant pool, while each cp info structure is one of eleven different types that may 
appear in the constant pool. The 2-byte quantity access flags is a mask of modifiers used 
to specify class and interface accessibility.  

An extendedform of access flags also occurs in the field info and method info structures, 
where it serves the same purpose. The 2-byte quantities this class and super class refer to 
the constant pool entries containing pre-cisely what their names indicate. 

The remainder of the class file consists of four tables, with one table each for interfaces, 
fields, methods, and attributes. Each table is preceded by a 2-byte quantity specifying the 
number of entries in that table, and each entry in a particular table is a structure of a type 
appropriate for that table. While each of these tables is an integral part of the class file, 
the methods table contains the byte code to be run in the JVM, and so a closer look at it is 
in order. 

The methods table of a Java class file contains methods count en-tries, and each entry is a 
structure of type method info, which has the following format:  method info 

u2 access flags; 

u2 name index; 



u2 descriptor index; 

u2 attributes count; 

attribute info attributes[attributes count]; 

The JVM class file specification offers six predefined types of attribute info structures: 

1. Code 

2. ConstantValue 

3. Exceptions 

4. LineNumberTable  

5. LocalVariableTable  

6. SourceFile  

The most important of these attribute info structures is the Code attribute, which contains 
the JVM instructions for a single Java method and has the following format: 

Code attribute 

u2 attribute name index; 

u4 attribute length; 

u2 max stack; 

u2 max locals; 

u4 code length; 

u1 code[code length]; 

u2 exception table length; 

table info exception table[exception table length]; 

u2 attributes count; 

attribute info attributes[attributes count]; 

The code array contains the bytes of code actually run by the JVM.  Each byte of the 
code array is either a legal Java opcode, of which there are 201 at the present time, or an 
operand of an opcode. The code array, like the class file as a whole, is subject to a 



multitude of static and structural constraints, all of which must be checked by the Java 
Verifier [Lind].   

While the class file format greatly enhances Java’s security by making the verification 
process much more tractable, it also raises some security concerns of its own [McGF]. 
The well-defined format and level of detail present in class files make it a 
straightforward, though tedious, task to re-cover source code from them. The justly 
celebrated Mocha decompilerdoes precisely that. Using the Mocha decompiler, for 
example, it is an easy matter for one to decompile class files to source code and scour 
them for security weaknesses, and it is just as easy for a Java developer to decompile a 
business competitor’s work and search for trade secrets. What can be read can often be 
rewritten, but one need not go to all of the effort of decompil-ing class files to source 
code, editing that source code, and re-compiling it to obtain hacked class files. 

The hacker who knows a bit of Java programming, the class file for-mat, and Java 
opcodes can easily insert, delete, or otherwise alter code in class files, all without effect 
on the class files’ verifiability. To insert some code, for instance, one need only append 
entries to the constant pool, append the appropriate opcodes to a suitable method’s code 
array, and use the goto instruction (167 or 0xa7) to jump to and from the inserted code. 
One has only to be careful and adjust the appropriate counts in the class file to maintain 
its verifiability. When the class file attacked happens to be SecurityManager.class or 
AppletClassLoader.class, more dire consequences would be sure to follow. The class 
java.io.RandomAccessFilehas handy methods for reading and writ-ing Java primitive 
data types, including unsigned 1-, 2-, and 4-byte quan-tities, at arbitrary locations in files. 
With Java’s power and ease of use, it takes a scant few hours to develop the knowledge 
and skills required for the task. 

Thus it is extremely simple to read and manipulate Java class files for evil purposes. In 
particular, it is very easy to take byte code produced by a Java compiler and alter it to 
produce deviant class files. It is quite possible that deviant class files will provide a new 
avenue for the attack applets that the Princeton team developed last year. But one need 
not be so sophisticated in order to develop a devastating attack applet. An industrious 
hacker could just as easily produce and test randomly generated deviant classes until a 
suitably destructive one appears. Moreover, what can be done by a hacker can just as 
easily be done by a virus. In the future we should expect class files to become tempting 
targets for hackers and virus writers.  

3. JAVA SOURCE CODE VERSUS BYTE CODE 

The overview of the class file format in the previous section revealed how simple it is to 
systematically inspect and tamper with Java class files. That alone is cause for concern. 
But the lack of a one-to-one correspondence between Java source code and class files 
which pass the Java Verifier is cause for much greater concern. There is fundamental 
incoherence between the Java programming language and the byte code passed by the 
Verifier. 

A Java compiler will take any valid Java program and produce a class file which will 
pass the Verifier, yet there are class files which pass the Verifier but correspond to no 
valid Java program. Such deviant class files contain code not derived from legitimate 
programming constructs. Thus the JVM allows byte code to extend the Java language far 



beyond its officia l bound-aries.  

Since some of Java’s security policies depend upon the language itself, this is a potential 
source of serious security breaches. To make mat-ters worse, the ease with which class 
files can be altered entails that it is utterly simple to produce deviant byte code. It also 
entails that the quantity of deviant byte code is vastly greater than that of the legitimate 
byte code produced by Java compilers. 

One source of the problem is that the class file format is entirely inde-pendent of the Java 
language. While the Java Verifier can check with 100% certainty whether or not a given 
file is a bona fide class file, the Verifier does not, and most likely cannot, determine 
whether or not that file was produced by a Java compiler. The Verifier’s function is to 
perform a multitude of tests to make sure that a potentially hostile file is consistent with 
some of the Java language’s most important constraints. Thus it should be no surprise 
that byte code is more powerful than source code. The words of the Sun programmer 
who wrote check code.c, the heart of the Java Verifier, are particularly apt: "All currently 
existing code passes the test, but so does lots of bad code." How true. 

To compound the problems, a number of significant constraints are not enforced by the 
Verifier, and some opcodes possess more functionality than is apparently used by Sun’s 
Java compiler. Examples of this abound. The Java Virtual Machine Specification lists 
three specific properties of excep-tion handlers which byte code produced by Sun’s Java 
compiler always pos-sesses, but which are not checked by its Verifier: 

1. The ranges of instructions protected by distinct exception handlers must be disjoint, or 
one must contain the other; 

2. An exception handler cannot occur in code protected by itself; 

3. Control cannot be passed to an exception handler’s code by any means other than an 
exception.   

These constraints are not enforced because supposedly "they do not pose a threat to the 
integrity of the Java Virtual Machine" [Lind, p.133]. It remains to be seen whether or not 
such a cavalier view of Java’s security is justified.  One need not rest content with such 
officially documented examples; oth-ers are readily found. An apparently harmless 
example is that arbitrary bytes can be appended to class files without effecting their 
verifiability, contradicting the JVM Specification [Lind, p.125]. A more interesting case 
study is the goto instruction (167 or 0xa7). While the Java language studiously avoided 
the goto statement, one is built into the JVM instruc-tion set. Although Sun’s Java 
compiler seems to always employ it in the forward direction, passing goto a sufficiently 
large offset allows it to pass control backwards. This allows deviant byte code to achieve 
arbitrary trans-fer of control within a method. In particular, arbitrary branches into and 
out of catch and finally blocks work perfectly well, and the better con-trolled jsr (168 or 
0xa8) and ret (169 or 0xa9) instructions can be by-passed.  

It is quite possible that a deviant use of goto together with highly non-standard exception 
handling could open the back door of the JVM for attack applets to enter. In any event, 
deviant byte code running in the JVM is unpredictable and makes a mockery of Java’s 



claims to security. 

The surprising flexibility of the goto instruction has another interesting use. It is 
especially easy to append opcodes to any code array, execute that code, and return. This 
is very good news indeed for virus writers. Moreover, the existence of such appended 
code exposes another weakness in the Veri-fier - appended code is not consistently 
verified. If control is transferred to it at some point, it almost certainly is, but dead 
opcodes appended are some-times inspected and sometimes not. This is troubling and 
further raises the prospects of deviant byte code harboring nasty surprises. This 
combination of language-dependent security, rules not enforced by the Verifier, undocu-
mented behavior of opcodes, and inconsisent code checking entails a great deal of risk. 
At the very least it implies that very little can be asserted with certainty about Java 
Security. Clearly much more work remains to be done before Java can be declared safe. 

4. BATTLE OF THE BYTE CODE 

The plea to ponder potential security threats always seems less convinc-ing in the 
absence of concrete examples. In order to illustrate the threats posed by deviant and 
subversive byte code, the author created a number of examples. Some are lighthearted, 
while others are more serious. All of these examples are readily obtained over the World 
Wide Web [LaD5]. The main point of these examples is that it is very easy to alter Java 
class files and just as easy to create deviant byte code, but a corollary is that Java class 
files are also tempting targets for hackers and virus writers. In pondering these examples, 
one should recall Frederick Cohen’s amusing tale of an ex-pert’s reaction to one of his 
early demonstrations [Coh2, pp.35-36]:  ... and he got really upset. He said "I don’t know 
why we had you here, you’re the worst programmer I have ever seen. In 15 minutes, I 
could write a program to do this, it would go through the system like a hot knife through 
butter, and nobody would even notice it." So I said, "That’s the point!" He finally got the 
point.   As a first example, the author wrote and then attacked Beginner.java, which was 
contrived to try reading a nonexistent file, catch the result-ing IOException and print an 
error message ("Oops!"), and finally print one last message ("Help!"). After inspecting 
Beginner.class, the author wrote Attacker.java, which inserted 3 bytes of code into 
Beginner.class at the end of its finally block: goto followed by the 2-byte offset nec-
essary to return control to the beginning of the program. Attacker also ad-justedthe 
attribute length and code length of the proper Code attribute structure to maintain 
verifiability. The altered Begin-ner.class readily passed the Verifier, and when run, it 
proceeded into an infinite loop of printing "Oops!" and "Help!" messages, as expected. 
This deviant class file could not have been produced by a Java compiler, and the Mocha 
decompiler failed to decompile it. A second version of Attacker.java was able to insert 
similar code into the catch block and achieved a sim-ilar effect, though it also had to alter 
the Exceptions table to preserve verifiability. 

A more interesting example is PublicEnemy.java. Given a target direc-tory, this Java 
application searches it and all of its subdirectories for Java class files. Once a class file is 
located, PublicEnemy alters the contents of its access flags for the class, its fields, and its 
methods. The results are the following: 

The class becomes public. Any final fields and methods become non-final; any non-
public fields and methods become public; and all public fields and meth-odsremain so.  



Attacked classes pass the Verifier and continue to run just as before, and their sizes do 
not change. But they are then open to the maximum amount of inspection and abuse by 
other Java classes. The system whose netscape.apple t.* classes fell prey to PublicEnemy 
would allow Java applets to rampage through it. Thus PublicEnemy would be a fear-
somepayload for a Java Trojan horse or virus to carry. It also makes an important point 
about the dangers of trust for Java - Inadvertently trusting a single hostile class a single 
time can lead to a swift, silent, and thorough compromise of all Java-related security.  In 
the examples considered so far, Java class files have altered other class files to achieve 
dubious ends. But a class file  is certainly capable of inducing mutations in itself, while 
remaining acceptable to the Verifier, and taking actions based upon its history. A very 
simple application, Mutator.java, was created to illustrate this capability. By altering a 
single byte of its own class file each time it runs, Mutator keeps track of the number of 
times it has beenrun and deletes itself, together with its source code, if present, on the 
sixth attempted run. This example shows that even simple class files are capable of 
adaptation and learning. The power of the Java language, and the greater power of byte 
code, when combined with the transparency of the class file format, make it feasible to 
create armies of intelligent class files that can attack, defend, and maneuver in file 
systems by exploiting the Java Virtual Machine.  

The main point of these examples is not the obvious one, that Java class files are easy 
prey for Trojan horses (destructive programs that appear to be benign) and viruses 
(programs that reproduce and may or may not be overtly destructive). Rather the points 
here are that Java class files are easy to alter, that deviant class files are simple to 
manufacture, and that the power of byte code extends well beyond that of the Java 
language. These points are perhaps better illustrated by the application HoseMocha.java. 
   

It has been observed that the Java class file format makes it a simple mat-ter to recover 
valid source code using decompilers such as Mocha. As was the case with the altered 
Beginner.class, deviant byte code resists decom-pilation because it corresponds to no 
Java source code. This suggests that class files could be protected from decompilation by 
making them deviant, while preserving their functioning. The Java application 
HoseMocha.java does precisely that, and it protects the class files of both applications 
and applets equally well. Its operation is simple. It sifts through a given class file until it 
arrives at the methods table. Once there, it inspects each method’s attributes and looks 
for the method’s Code attribute. Af-ter finding that, it increases the attribute length by 1, 
increases the code length by 1, and inserts a dead opcode (for the pop instruction in this 
case) at the end of the code array. It so happens that the incon-sistent Verifie r ignores this 
frivolous pop, so that the altered class files are successfully verified and continue to 
function as designed. But the Mocha decompiler, trying desperately to do the impossible, 
gets a segmentation violation and dies when fed such deviant class files. If a future 
release of Mocha were to start defending itself, new strategies could be devised to protect 
class files from decompilation into source code. More sophisticated tools could rewrite 
most byte code in non-standard ways and make class files much more resistant to 
decompilation. It should now be clear that the power of byte code greatly exceeds the 
power of Java source code.   

5. MORE VIRULENT THREATS 

From the preceding examples it is but a short step to the realm of the virus. The threats 



posed by PC viruses are well understood, and ample tools for their prevention, detection, 
and elimination are readily available. 

There is a widely held myth, however, that UNIX systems are somehow immune to 
viruses [Rada]. Of course some of Frederick Cohen’s pioneering work on viruses was 
carried out on UNIX systems [Coh1, Coh2], and in the late 1980’s Tom Duff and M. 
Douglas McIlroy developed several strains of UNIX viruses at AT&T Bell Laboratories 
[Duf1, Duf2, McIl]. Java’s "write once, run anywhere" capability offers the possibility of 
universal computer viruses, which would lay to rest the myth by putting UNIX systems 
on a par with DOS machines as havens for viruses. The examples of the preceding 
section illustrate numerous skills useful to Java Platform Viruses, and class files can 
offer fine mobile homes for them. 

As proof-of-concept the author created several applications, which, when inadvertently 
trusted and run, infect the unfortunate user’s system with mal-ware or viruses: 

Homer.java generates and executes homer.sh, a Bourne shell script virus which would 
work on any UNIX platform by appending itself to all Bourne shell scripts in a user’s 
home directory. It would be just as easy to write a Java Trojan horse to detect the user’s 
platform and infect it with an appropriate virus. 

Hijacker.java is a Java Trojan that subverts Sun’s javac by adding a hostile main class to 
the user’s CLASSPATH ahead of classes.zip.   In this case the subverted compiler simply 
announces its presence and appends the string "Hijacked!" to class files that it produces, 
but it could just as easily infect them with a Java Platform virus.  

CopyCat.java attacks Java source code in a user’s home directory by inserting the 
necessary code to make it viral. When compiled and run, infected applications do 
likewise.    

VAppMaker.java also attacks Java source code. It compiles the in-fected source code and 
restores it to its original state, leaving only infected class files, which do likewise. It also 
makes applets able to run as applications, increasing the odds of further infection. 

Of course these last two Java viruses are necessarily slow in their activities and obvious 
in their effects; they stand no chance of being successful in the wild and simply serve to 
illustrate the possibilities. 

A more realistic example is provided by ClassHacker.java. This appli-cation attacks Java 
class files directly, inserting the necessary byte code to make them viral and making all 
of the adjustments needed to insure that infected class files continue to pass the Verifier 
and run as before.   

ClassHacker uses the same techniques for manipulating class files as the examples of the 
preceding section, and the amount of code that it inserts is about 2K bytes. Though it acts 
swiftly, the viral code makes no effort to conceal or defend itself, and so it is unlikely to 
be very successful. 

While the examples of Java Platform viruses considered here are not par-ticularly 
threatening, more virulent threats are sure to arise in the future.  The evil that hostile byte 



code can perpetrate is limited only by the power of the Java Virtual Machine and human 
ingenuity. At the very least, the JVM will require integrity maintenance mechanisms to 
defend its crucial classes from tampering, and users will need to be enabled to better 
defend the files in their CLASSPATHs. Additional levels of trusted code in the Java 
programming environment will complicate matters and may create more problems than 
they solve. Key management is sure to come under attack by hostile byte code, and the 
stakes will be higher. One misapplication of trust can open a back door to attack applets 
and lead to a total breakdown of all Java-related security. 

What does this tell us about Java Security? As long as there remains such a vast gulf 
between the Java programming language and the byte code accepted by the Java Verifier, 
very little can be asserted with any certainty about Java Security. Given the complete 
independence of the Java language and the class file format, bridging this gulf is going to 
be a very difficult task. The power of byte code beyond the Java language and the ease 
with which class files can be attacked may become a source of recurring prob-lems for 
Java Security. This entails that Java applications and applets should be accorded little if 
any trust until the problems are better understood and solutions are found. Thus it seems 
extremely likely that the problems will continue as Java grows up and moves from its 
childhood sandbox to a much harsher adulthood. 

6. REFERENCES 

[Coh1 ] Frederick B Cohen. Computer Viruses - Theory and Experiments.  Computers & 
Security, Volume 6, Number 1, pp.22-35. Elsevier Ad-vanced Technology, Oxford, 
1987. 

[Coh2 ] Frederick B. Cohen. A Short Course on Computer Viruses, 2nd Edi-tion.  John 
Wiley & Sons, New York, 1994. 

[Duf1 ] Tom Duff. Viral Attacks on UNIX Systems. Proceedings of the Winter 1989 
USENIX Conference, pp.165-171. USENIX Association, Janu-ary, 1989. 

[Duf2 ] Tom Duff. Experience with Viruses on UNIX Systems. Computing Systems, 
Volume 2, Number 2, pp.155-171. USENIX Association, Spring, 1989. 

[Gosl ] James Gosling, Bill Joy, and Guy Steele. The Java Language Speci-fication. 
Addison-Wesley, Reading, MA, 1996. 

[LaD1 ] Mark D. LaDue. Pushing the Limits of Java Security. Tricks of the Java 
Programming Gurus, Chapter 23. SAMS.net Publishing, Indi-anapolis, 1996.  Available 
at http://www.math.gatech.edu/ mladue/HostileArticle.html. 

[LaD2 ] Mark D. LaDue. Java Security: Whose Business is it? The Online Business 
Consultant. May, 1996.  Available at 
http://www.math.gatech.edu/mladue/OBCArticle/Article.html. 

[LaD3 ] Mark D. LaDue. Java Insecurity. Computer Security Journal. Com-puter 
Security Institute, San Francisco. Spring 1997.  Available at http://www.math.gatech.edu/ 



mladue/Java insecurity.html. 

[LaD4 ] Mark D. LaDue. Java Security: From Eggs to Applets. Available at 
http://www.math.gatech.edu/ mladue/eggs to applets.html. 

[LaD5 ] Mark D. LaDue. Hostile Java Source Code.   Available at 
http://www.math.gatech.edu/ mladue/SourceCode.html. 

[Lind ] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specifi-cation. 
Addison-Wesley, Reading, MA, 1997. 

[McGF ] Gary McGraw and Edward Felten. Java Security: Hostile Applets, Holes and 
Antidotes. John Wiley & Sons, New York, 1996. 

[McIl ] M. Douglas McIlroy. Virology 101. Computing Systems, Volume 2, Number 2, 
pp.173-181. USENIX Association, Spring, 1989. 

[Rada ] Peter V. Radatti. The Plausibility of UNIX Virus Attacks. CyberSoft, 
Incorporated. April, 1996. 

[Thom ] Ken Thompson. Reflections on Trusting Trust. Communications of the ACM, 
Volume 27, Number 8, pp.761-763. August, 1984. 

SCHOOL OF MATHEMATICS, GEORGIA INSTITUE OF TECHNOLOGY, 
ATLANTA, GA 30332-0160 

E-mail address: mladue@math.gatech.edu 
 


